

IPv6 in Wi-Fi Hotspots

Enno Rey Christopher Werny @enno_insinuator

@bcp38_

#whoarewe

- o Old-school networking guys, with a special focus on security (<u>www.ernw.de</u>)
- o Doing quite some stuff in the IPv6 space
 - o https://insinuator.net/2019/01/ipv6-talks-publications
- o Operating a (medium-size) conference network with v6-only+NAT64 in the default SSID since 2016

Agenda

- o Strategy / Decisions
- o IPv6 in Wireless Networks / Technical Considerations
- o Supporting Infrastructure & Stuff
- o Summary / Conclusions

Case Study

- \$COMPANY plans to enable IPv6 in up to 3K Wi-Fi hotspots in supermarkets in Western Europe
 - o Dual-stack or v6-only?
- o Free offering → no SLAs
- But still they'd like to avoid "discussions which could affect their brand".

Strategy / Decisions

- o Dual-Stack vs. v6-only (+NAT64)
 - From "IPv6 perspective" the most important one
- o Lots of misinformation floating, in different circles
 - Which is why we built the lab discussed on Monday
 - https://ripe78.ripe.net/wpcontent/uploads/presentations/42-ERNW_RIPE78_LightningTalk_2019_WiFi_v6only.pdf
- One must thoroughly consider users, platforms, applications and expectations.

Timeline might play a role, too.

Strategy / Decisions

Audience

- Expectations (⇔ communication)
- Types of devices (platforms, OSs, versions!)
- Types of applications (e.g. gaming vs. VPN clients)

o Requires

- Definition
- Testing
- Communication & mgmt/sponsor approval

Stuff That Might Have Issues

- o As of 05/2019 (\rightarrow issues might be gone 06/2019...)
 - Gaming (namely multiplayer)
 - VPN clients
 - But a lot of things (progress) seem to happen in this space right now.
- Please note: it is crucial that you perform your own testing if needed. This exact slide should *not* be used to spread FUD in future discussions;-)

From FOSDEM: IPsec VPN Clients & v6-only

- When we look into the legacy dual stack network, we notice that for the IPv4 traffic distribution we see outgoing
 - ~214M TCP packets and
 - ~6M ESP (VPN) packets while incoming was
 - ~394M TCP packets with
 - o ~8M ESP packets

From FOSDEM: IPsec VPN Clients & v6-only

- o This means that at least about 2–3% of all traffic was on an IPSEC VPN. And this excludes the TCP VPN traffic on ports 443/TCP and 22/TCP. On the IPv6 network we do not see a similar amount of ESP traffic.
- o This strongly suggests that the people remaining on the dual stack network do so because their VPN solution does not work with an IPv6 only network.

Rationale re: Trends

o IPv6-enabled connection endpoints (e.g. websites/servers) increase over time.

- o Client-side apps (on mobile) nearly fully support IPv6, not least due to Apple's respective requirements (2016).
- Overall IPv6 support of client OSs and "exotic applications" continuously gets better.

Just to Make this Clear

- Based on our testing we think that going with v6-only (+ NAT64) is a reasonable approach now
 - o Only very few issues (stuff not working) to expect
 - Namely on platforms or types of app which might not even be relevant for your deployment scenario
 - o At the same time this can save a lot of operational effort.
 - Telemetry data & lab results are always a good idea ;-)
 - Proper supporting communication can be helpful.
- Note: for most scenarios distributing DNS resolvers via RAs/RDNSS and stateless DHCPv6 to be strongly considered.

IPv6 in Wi-Fi Networks / Technical Considerations

IPv6 in Wi-Fi Networks

- WLANs are shared media
 - Ftr: yes, even with 802.11ax ;-)
- IPv6 communication on the *local link* involves a lot of multicast. How does that translate to/affect traffic
 - o On air
 - Between APs serving "[the same] IP subnets"
- o Some ongoing discussion, e.g.
 - IETF I-D IPv6 Neighbor Discovery on Wireless Networks. draft-thubert-6man-ipv6-over-wireless

In Practice

- o Some tuning is needed
 - o (WLAN) Controller level
 - Which (of the above) to proxy/throttle/block
 - Inter-AP communication
 - L3 infrastructure
 - Properties of RAs
 - Properties of ND
 - o Other (e.g. MLD[?])

Neighbor Binding Table on Cisco WLC

```
mmaxy
             Display the IPv6 Neighbor Binding Table
Cisco Controller) >show ipv6 neighbor-binding SUMmary
inding Table has 173 entries, 173 dynamic (limit 11000)
odes: L - Local, S - Static, ND - Neighbor Discovery, DN - DNCP
reflevel flags (privi):
001:MAC and LLA match
                         0002: Orig trunk
                                                    0004:Orig access
                         0010:Orig trusted access
008:Orig trusted trunk
                                                    0020: DHCP assigned
040:Cga authenticated
                         0080:Cert authenticated
                                                    0100:Statically assigned
  1Pv6 address
                                            MAC Address
                                                                                                      Time left
                                                              Port VLAN Type
                                                                                 privi age state
  fe80::fedb:b3ff:
                                                                     10 wireless 0005
                                           fc:db:b3:
                                                                                          5 STALE
                                                                     10 wireless
                                                                                         J6 STALE
  fe80::bef5:acff:
                                                                     30 wireless 0005
                                                                                          7 STALE
  fe80::aebc:32ff:
                                                                     10 wireless 0005
                                                                                         11 STALE
D fe80::ad24:85f3:
                                                                     10 wireless 0005
                                                                                          5 STALE
                                                                                          3 PEACHABLE 122
  fe80::aa66:7fff:
                                           a0:66:7f:
                                                                     10 wireless 0005
                                                                     10 wireless 0005
                                                                                         30 STALE
                                                                     10 wireless 0005
                                                                                         11 STALE
D fe80::9ad6:f7ff:
                                           9B:d6:f7:
                                                                     30 wireless 0005
                                                                                         II STALE
                                                                     40 wireless
                                                                                          3 REACHABLE 118
                                                                     10 wireless
                                                                                         18 STALE
                                                                     10 wireless
                                                                                         21 STALE
                                                                                          2 REACHABLE 178
  fe80::7ed1:c3ff:
```


RA Throttling on Cisco WLCs / Sample

RA Throttle Policy > Edit	
Enable RA Throttle Policy	✓
Throttle Period (10-86400 seconds)	600
Max Through (0-256)	5 No Limit
Interval Option	Throttle ▼
Allow At-least (0-32)	1
Allow At-most (0-256)	1 No Limit

FHS on WLC Controller

FHS Feature	Default	Configurable?
RA Guard	Enabled	Yes (only on APs)
DHCPv6 Guard	Enabled	No
IPv6 Source Guard	Enabled	Yes
IPv6 ACLs	Disabled	Yes

Gateway Configuration

- To reduce the multicast traffic the following parameters adjusted in Troopers network:
- Router lifetime to 9000 seconds
- Reachable lifetime to 900 seconds

- Unicast solicited RAs
- o The above are some "best practice" values, initially inspired by Andrew Yourtchenko from the *Cisco Live* Wi-Fi implementation.

Config Snippet (incl. NAT64)

```
interface GigabitEthernet0/0/0.30
<output omitted>
description ====TRP-NAT64===
encapsulation dot1Q 30
ipv6 address FE80::1 link-local
ipv6 address 2A02:8071:F00:64::1/64
ipv6 enable
ipv6 mtu 1280
ipv6 nd reachable-time 900000
ipv6 nd other-config-flag
ipv6 nd router-preference High
ipv6 nd ra solicited unicast
                                                                                config
ipv6 nd ra lifetime 9000
ipv6 nd ra interval 4
ipv6 nd ra dns server 2A02:8071:F00:64::251
ipv6 dhcp server DHCP-TRP-NAT64-v6-POOL
nat64 enable
```


Supporting Infrastructure & Processes

- Infrastructure
 - Captive Portal (usually 3rd party provider) ⇔ IPv6? ;-)
 - Management & WLC/AP-communication ⇔ IPv6? ;-)
 - Telemetry
- o Processes
- o Communication
 - Users
 - Feedback loop re: stuff not working
 - Management / Sponsor
 - Vendors (of apps that don't work)

Monitoring / Case Study

- We wanted to get a feeling about the NAT64 translations that are active on our gateway during Troopers at any given time.
- o But how do we get these data?
 - SNMP? Unfortunately there is no OID we can query to get the active translations.

EEM to the Rescue

- One nice person on the c-nsp list sent us a clever workaround
 - o Thank you Nikolay!
- While he had initially created the EEM template for IPv4 NAT entries, we could adjust it easily to our needs

High Level Steps - EEM Template

- 1. Perform the relevant "show commands"
 - Show nat64 translations in this case
- 2. Parse the output with some RegEx magic
- 3. Store this value in a SNMP "Expression" MIB
- 4. Query OID over SNMP to retrieve the value.
- 5. Rinse and repeat every 30 seconds

Complete EEM Template

```
> snmp mib expression owner NAT64 name NAT64TRANSLATIONS
> description Total active translations
> value type integer32
> expression 0
> event manager applet NAT64-Translations
> event timer watchdog time 300 maxrun 60
> action 010 cli command "enable"
> action 030 cli command "configure terminal"
> action 040 cli command "do-exec show nat64 translations"
> action 050 regexp "^.+\s([0-9]+)" "$ cli result" match total translations
> action 100 cli command "snmp mib expression owner NAT64 name NAT64TRANSLATIONS"
> action 110 if $ regexp result eg "1"
> action 120 cli command "expression $total translations"
> action 130 else
> action 140 cli command "expression 0"
> action 150 cli command "exit"
> action 160 end
```


Telemetry for DNS Queries

- We also wanted to a get a feeling to which degree client systems use either the RA or (stateless) DHCPv6 provided DNS resolvers.
- To achieve this, we installed two instances of unbound, provided those per RA and DHCPv6 respectively, and counted the total amount of DNS gueries each of them received.
 - Just to be clear, we didn't log what was actually requested.
 - In general you should be very cautious re: telemetry (not only DNS-related) in Wi-Fi hotspot type of networks.
 - Evidently some data points might be privacy-invasive.
 - Regulations might kick in, even conflicting ones.

Communication et al.

- How to incentivize users to use the v6-only SSID if there's a "legacy" (usually: dual-stacked) in parallel?
- How to provide feedback loop for stuff not working?
 - "Go to vendor" [+ "here's a template"] vs.
 - o Common generic customer support channels

Summary / Conclusions

- Deploying IPv6-enabled Wi-Fi hotspots requires specific considerations and tech. adjustments
 - Define strategy re: v6-only

Perform specific configuration on devices

Monitoring & telemetry igtriangle

Communication with users, vendors, mgmt.

Thank you for your Attention!

www.ernw.de

www.insinuator.net

Enno Rey, @enno_insinuator Christopher Werny, @bcp38_

Image Sources

Icons made by <u>Freepik</u>
from <u>www.flaticon.com</u>
https://www.pexels.com/

