Creating a "long-term memory" for the global DNS

UNIVERSITY OF TWENTE.

SURFNET

SDNLABS

NLNETLABS
Introduction

• Almost **five years ago**, we started with an **idea**:

"Can we measure (large parts of) the global DNS on a daily basis?"

• In this talk, we will discuss:
 • **Why** we wanted to do this
 • **How** we do it
 • And examples of **what we have learned** so far
Why measure the DNS?

- **DNS translates** from the **human** world **to** the **machine** world (and also helps in machine-to-machine interaction)

- (Almost) **every networked service relies on the DNS**

- Consequently, **measuring what is in the DNS** tells a story about the **evolution of the Internet** and its protocols
Hasn't someone tried this before?

- You may be familiar with **passive DNS** (popular in the security community)

- Has **two downsides**:
 1. Only sees what clients ask for (and is thus **biased**)!
 2. No control over query timing, so **unsuitable for time series**
How we measure

- OpenINTEL performs an active measurement, sending a fixed set of queries for all covered domains once every 24 hours.

- We do this at scale, covering over 216 million domains per day:
 - gTLDs:
 - .com, .net, .org, .info, .mobi, .aero, .asia, .name, .biz, .gov
 - + almost 1200 "new" gTLDs (.xxx, .xyz, .amsterdam, .berlin, ...)
 - ccTLDs:
 - .nl, .se, .nu, .ca, .fi, .at, .dk, .ru, .pφ, .us, <your ccTLD here?>
Grab your bingo cards folks!

- On the next slide, I am going to call this:

 (a) A blockchain
 (b) "Agile" and "lean"
 (c) Big data
 (d) Cyber!!!
Big data? Big data!

• Calling your research big data is all the rage -- research funders love it!

• So would our work qualify as big data?

• One human genome is about $3 \cdot 10^9$ DNA base pairs

• We collect over $2.3 \cdot 10^9$ DNS records each day (about $3/4$ of a human)

• Since February 2015 we collected over $3.1 \cdot 10^{12}$ results (3.1 trillion) or: over 1047 human genomes (I bet there's fewer people in this room)
We think we measure responsibly

- We have **clearly marked** the **address space** from which we measure (including **reverse DNS**)

- We have **reached out to large operators** in our datasets

- Very **few complaints** received (less than 5 since February 2015)
What can we do with all this data?

- We will illustrate the use of OpenINTEL with **three examples**:
 - Example 1: DNSSEC operational practices
 - Example 2: Improving DNS resilience
 - Example 3: The stupidest thing you can put in a TXT record
Example 1: DNSSEC

- (Hopefully) it is **well known** that .nl and .se have a **high level** of DNSSEC deployment, due to financial incentives.

- (Small) financial **incentives** economically **only benefit** large DNS operators.

- We hypothesised that the **incentives** would **encourage deployment en masse** but that deployments would **not necessarily follow security best practices**.
In this section, we evaluate the difference in security levels between DNSSEC deployments from large operators and small operators. First, we provide an overview of the average compliance per domain for large and small operators. Then, we analyze the compliance of single operators to evaluate whether these also encourage a secure delegation. Similarly to other TLDs, that happen to have only a small presence in Europe, this effect may be attributed to large operators in the Netherlands and Sweden.

TABLE IV

<table>
<thead>
<tr>
<th>TLD</th>
<th>#Domains</th>
<th>#Signed</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>.com</td>
<td>93,464,626</td>
<td>712,162</td>
<td>0.76%</td>
</tr>
<tr>
<td>.net</td>
<td>10,412,605</td>
<td>114,687</td>
<td>1.10%</td>
</tr>
<tr>
<td>.org</td>
<td>7,501,310</td>
<td>85,166</td>
<td>1.14%</td>
</tr>
<tr>
<td>.nl</td>
<td>4,353,518</td>
<td>2,736,393</td>
<td>62.85%</td>
</tr>
<tr>
<td>.se</td>
<td>1,153,129</td>
<td>723,532</td>
<td>62.75%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TLD</th>
<th>#Domains</th>
<th>#Signed</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>.com</td>
<td>23,349,922</td>
<td>224,251</td>
<td>0.96%</td>
</tr>
<tr>
<td>.net</td>
<td>2,598,823</td>
<td>26,400</td>
<td>1.02%</td>
</tr>
<tr>
<td>.org</td>
<td>1,871,904</td>
<td>20,342</td>
<td>1.09%</td>
</tr>
<tr>
<td>.nl</td>
<td>1,087,457</td>
<td>92,791</td>
<td>8.53%</td>
</tr>
<tr>
<td>.se</td>
<td>287,115</td>
<td>13,794</td>
<td>4.80%</td>
</tr>
</tbody>
</table>

Just 14 operators responsible for over 80% of signed domains

Just 3 operators responsible for over 80% of signed domains
Example 1: DNSSEC

- We checked DNSSEC practices against guidelines from NIST
- Result: operators use (too) small ZSKs (1024-bit) they never roll
- Similar results for all large operators in .se and .nl

<table>
<thead>
<tr>
<th>DNS operator</th>
<th>Master NS†</th>
<th>#Signed</th>
<th>Algorithm</th>
<th>KSK size</th>
<th>ZSK size</th>
<th>ZSK Rollover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopia AB</td>
<td>*.loopia.se.</td>
<td>282,604</td>
<td>✔</td>
<td>✔</td>
<td>△+</td>
<td>✗</td>
</tr>
<tr>
<td>One.com</td>
<td>*.one.com.</td>
<td>221,372</td>
<td>✔</td>
<td>△</td>
<td>△+</td>
<td>✗</td>
</tr>
<tr>
<td>Binero AB</td>
<td>*.binero.se.</td>
<td>123,131</td>
<td>✔</td>
<td>✔</td>
<td>△+</td>
<td>✗</td>
</tr>
</tbody>
</table>
Example 1: DNSSEC

- **Impact**: IIS (.se operator) **decided to change their incentive policy** and set **explicit security requirements**. This is **already having an effect**!
Example 2: DNS resilience

- **The attack on Dyn in 2016** shows the risk of sharing DNS infrastructure.

- **Data** from OpenINTEL shows that many key customers switched to using two DNS providers.

![Graph showing DNS resilience](https://www.openintel.nl/)

October 21, 2016

- Exclusive
- Non Exclusive
Example 2: DNS resilience

- Recently started a collaborative project on DNS resilience against DDoS attacks called "MADDVIPR"
- Collaboration between UTwente (NL) and CAIDA/UCSD (US)
- Makes extensive use of OpenINTEL to map points of failure, e.g.:
 - Parent/child delegation mismatches
 - Parent/child delegation TTL mismatches
 - Shared infrastructure
 - Topological bottlenecks
Example 2: DNS resilience

- We are currently studying parent/child delegation TTL mismatches
- These impact resilience under DDoS (time to change) and how long a DNS hijack lingers
Example 2: DNS resilience

- **Topological diversity** is important to **protect against denial-of-service**

- Vast **majority of .com domains** has **name servers located in a single AS**

- For **.nl almost half of domains** have **name servers in at least two AS-es**
Example 2: DNS resilience

• **Majority** of **.com** and **.nl** have name servers in multiple prefixes, yet **15%** only have name servers **in a single prefix** (IPv4)

• **Student project:** use RIPE Atlas to check if name servers share a location (using speed-of-light triangulation)
Example 3: put it in a TXT record

- In TXT records we find:
 - HTML snippets
 - JavaScript
 - Windows Powershell code
 - Other scripting languages (bash, python, ...)
 - PEM-encoded X.509 certificates
 - Snippets of DNS zone files
 - … (you literally can’t make this stuff up)

Studying these closely, as they appear (partly) malicious
Hanlon's maxim

“Never attribute to malice, that which can adequately be explained by stupidity”
Drum roll...
And the winner is...

-----BEGIN RSA PRIVATE KEY-----
MIICXwIBAAKBgQC36kRNc50wG3uDlrY0OxU+9X5LYlhdj0D+ax6BiC27W7iweVwf
wupxsMvLBhhgegptc5tqb1puXPkJx6aHwhToFtKSEy4fIWTjWoRthy07SSLsFAC
koXP++JxZ7bIakqdj5wAyIJ53zSJU7wKImH1Eha7+Myip9LG8HPfsZtY3wIDAQAB...
← I left this part out...
-----END RSA PRIVATE KEY-----

• Why, oh why, oh why...

• And this is just one example, we’ve seen quite a few of these.

• What on Earth are these people doing?!
And the winner is...

-----BEGIN RSA PRIVATE KEY-----
MIICXwIBAAKBgQC36kRNc50wG3uDLry00xU+9X5LYlhdj0D+ax6BiC27W7iweVwf wupxsMvLBhhhegptc5tqb1puXPkCxA6aHwhToFtKSEy4fIWTjWoRthy07SSLsFAC koXP++JxZ7bIakqdj5wAyIJ53zSJu7wKImH1Eha7+Myip9LG8HPfsZtY3wIDAQAB ... <- I left this part out...
-----END RSA PRIVATE KEY-----

• Why, oh why, oh why... oh wait, someone's trying to configure DKIM --- D'oh!

<redacteddomain.tld> IN TXT "v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC36kRNc50wG3uDLry00xU+9X5LYlhdj0D+ax6BiC27W7iweVwf wupxsMvLBhhhegptc5tqb1puXPkCxA6aHwhToFtKSEy4fIWTjWoRthy07SSLsFAC koXP++JxZ7bIakqdj5wAyIJ53zSJu7wKImH1Eha7+Myip9LG8HPfsZtY3wIDAQAB"

MATCH!!!
Future of the project

- **Short term** challenges:
 - Ensure **robust data archival**
 - **Expand** the number of ccTLDs we **cover** ← can you help us?

- **Long term** goals:
 - Be the "long-term memory" of the DNS -- if someone in 2025 wants to know what DNS looked like in 2015, we have the answer
 - **Have real-world impact**, by improving the performance, resilience and security of the DNS
Questions? Talk to the team

Anna Sperotto
Anna procures research funding for PhD and postdoctoral research projects that use OpenINTEL data. She supervises PhD students that work with OpenINTEL data for their research.

Mattijs Jonker
Mattijs manages the development on the Big Data side of OpenINTEL, which ranges from having designed the data schema, to building data pipelines to collaborating institutions. He also administers the OpenINTEL Hadoop cluster, oversees day-to-day operation with the rest of the team, and tutors colleagues and collaborators in data use and analyses.

Olivier van der Toorn
Olivier takes care of the monitoring of the OpenINTEL measurement infrastructure, when a measurement stalls he is the first to know. Additionally, Olivier is closely involved in maintaining this infrastructure.

Roland van Rijswijk-Deij
Roland designed the architecture of OpenINTEL, writes most of the core measurement code of OpenINTEL and takes care of continuously expanding the measurement with new TLD data sources. Next to this, he manages the funding of the OpenINTEL measurement cluster and Hadoop cluster.

Here at RIPE 78
Questions?

Thank you for your attention!

Visit our webpage for more information: https://openintel.nl/