
Tag You're It! 
Revisiting the Reality of DNSSEC Keytags

Roland van Rijswijk-Deij 



Introduction
• DNSSEC validation requires a resolver to match signatures to keys 
→ it is inefficient to check a signature against every DNSKEY in a zone 

• To enable fast matching, DNSSEC has the notion of keytags  
(first introduced in draft 01 of what became RFC 2535 in August 1997) 

• These are 16-bit values included in RRSIG records and can help a resolver 
find a matching key 

• They are only a hint; the idea is that it is unlikely for keytag collisions to 
occur in a DNSKEY set, so they help match keys to signatures in most cases



Introduction

• Some years ago, Roy Arends presented at DNS OARC on the curious 
case of the unused keytags [1] 

• He generated large numbers of keys, and found that only between a 
quarter and half out of the 65536 possible keytags occurred 

• Due to mathematical properties of RSA keys and how the keytag 
algorithm computes the tag from the key's RDATA 

[1] https://slideplayer.com/slide/10329289/



In this talk

• While - with a generous community effort - Roy managed to explain why 
certain keytags do not occur in theory 

• In this talk we look at what keytags occur in practice 

• And draw lessons from this for protocol design (or: why we should 
have picked a different, simple algorithm for keytag computation)



Quick refresher: keytag algorithm
• Assuming "self" is a Python DNSKEY object, this is the algorithm:

def keytag(self):
acc = int(0)

wire = self.towire()

for i in range(0, len(wire)):
if i & 1 == 1:
acc += wire[i]

else:
acc += wire[i] << 8

acc += (acc >> 16) & 0xffff

return acc & 0xffff

• Basically accumulate even bytes in 
the lower 8 bits, odd bytes in the 
high 8 bits, and do some fiddling 
with carry bits 

• The outcome of this algorithm 
highly depends on the amount of 
structure and predictability in the 
input!



RSA keys have a lot of structure
• Skipping the details (which can be found in Roy Arends' OARC 

presentation), RSA keys have a lot of structure 

• E.g. due to the modulus always being odd, use of safe primes in key 
generation, strong preference for certain public exponents, ... 

• Also: flags, protocol version and algorithm are also included in the 
computation! 

• In the OARC presentation, there was talk of either 16384 or 32768 
possible keytags (but did not take every case into consideration)



What happens in practice?

• Experiment discussed at OARC relied on generating lots of keys 

• What we wanted to know: what happens in the wild? 

• We took one recent day of data from OpenINTEL for .com and .nl and 
looked at two things: 

• Keytags in the wild for RSA and ECDSA 

• Keytag collisions in the wild for RSA and ECDSA



What we expect to find
• As stated, RSA keys contain a lot of structure, and the keytag algorithm 

output is influenced by structure 

• We expect to find: 

• That certain keytags are much more common for RSA keys 

• That keytag collisions occur in the wild for RSA keys 

• That the occurrence of keytags for ECDSA is much more uniformly 
distributed due to a lack of structure in ECDSA keys



Heatmaps for RSA keytags

.com .nl



Distribution of RSA keytags in .com

• Takeaway: some keytags occur only once, a few keytags occur over 75 
times more often than that

0

500

1000

1500

2000

0 25 50 75 100
Number of occurrences

N
um

be
r o

f k
ey

ta
gs



Distribution of RSA keytags in .nl

• Why the difference? Different distribution in algorithms and key sizes!

0

500

1000

1500

2000

0 50 100 150 200
Number of occurrences

N
um

be
r o

f k
ey

ta
gs



So what about ECDSA?

.com .nl



ECDSA keytag distribution

• This looks much more like a Gaussian distribution (but isn't quite)

0

2500

5000

7500

10000

0 5 10 15 20
Number of occurrences

N
um

be
r o

f k
ey

ta
gs



Collisions

• Searched for collisions in OpenINTEL, by computing keytags for 
DNSKEY RRsets for all signed domains in .nl over 3 years of data 

• Distinguish between two types of collisions: 

• "Real" collisions, where two or more different keys in the keyset of 
the same algorithm and size have the same keytag 

• "Semi" collisions, where two or more different keys in the keyset have 
the same key tag, but have a different size or algorithm



Collisions over time

0

20

40

60

2016 2017 2018 2019

N
um

be
r o

f (
se

m
i−

)c
ol

lis
io

ns

Collisions

Semi−collisions



How rare are collisions?
• If keytags were uniformly distributed, we would expect the birthday 

paradox to apply, with n the number of keys and d the number of 
possible keytags; table shows this theoretical vs. actual probability

#keys in DNSKEY set Theoretical probability Observed probability

2 0,00153% 0,00122%

3 0,00458% 0,00322%

4 0,00915% 0,01616%

5 or more 0,01526% 0,00148%



Real-world impact

• Keytags are only intended as a hint for resolvers; they should never 
solely rely on them to identify the correct key for signature validation 

• While very rare in practice, collisions have a real impact 

• A collision forces resolvers to validate signatures against all keys that 
have a matching key tag until the correct key is found 

• This will lead to extra CPU intensive cryptographic operations, that 
cause a small, but quantifiable increase in load on validating resolvers



What could we do differently?

• Clearly, the keytag algorithm appears not optimal for its purpose, but 
appears to make collisions less likely than expected 

• So what would happen if we used something that produces a random 
uniform output, regardless of any structure in the input? 

• (Cryptographic) hash functions have this property, but are likely much 
more computationally intensive 

• Yet there is a middle ground: what if we used CRC16?



Heatmap: keytag vs. CRC16 for .nl

keytags CRC16



.nl RSA CRC16 distribution

0

500

1000

1500

2000

2500

80 100 120 140
Number of occurrences

N
um

be
r o

f k
ey

ta
gs



Is it actually better?

0

25

50

75

100

2016 2017 2018 2019

N
um

be
r o

f (
se

m
i−

)c
ol

lis
io

ns

Collisions

Semi−collisions



Why is CRC16 not better?
• Random uniform (-like) distribution means; any keytag is equally likely 

• Due to the Generalised Birthday Paradox, the likelihood of a collision 
increases with the number of keys in a keyset

#keys in DNSKEY set Theoretical probability Observed probability

2 0,00153% 0,00165%

3 0,00458% 0,00465%

4 0,00915% 0,02349%

5 or more 0,01526% 0,00853%



Open questions

• The unspoken assumption for the empirical data is that implementations 
don't already prevent collisions from occurring 

• For some, this assumption may not hold (e.g. LDNS, BIND) 

• Can we fingerprint the crypto libraries used based on what we know 
from Roy's presentation and the distribution we observe?



Conclusion: what did we learn?

• At first glance, the original keytag algorithm seems suboptimal 

• Yet choosing something "better" in terms of the likelihood of values 
occurring turns out to be worse! 

• This is at least an interesting lesson in protocol design; without really 
meaning to, the writers of the DNSSEC RFCs picked a "better" algorithm 

• If we literally translate a Dutch phrase for this, they were: 
"Unknowingly capable" ;-)



Operator and implementer advice

• Operators: if your domain is important and likely to be queried (very) 
frequently, then make sure you have no keytag collisions in your DNSKEY 
set -- the probabilities show that the chances of requiring more than one 
extra key generation is vanishingly small 

• Implementers: consider (optionally) checking DNSKEY sets for keytag 
collisions and regenerate key(s) if a collision occurs 

• Arguably: follow Postel's Law!



Thank you! Questions?

F nl.linkedin.com/in/rolandvanrijswijk 

L @reseauxsansfil 

 roland@nlnetlabs.nl


