Tag You're It!

Revisiting the Reality of DNSSEC Keytags
Roland van Rijswijk-Deij

Introduction

e DNSSEC validation requires a resolver to match signatures to keys
— it is inefficient to check a signature against every DNSKEY in a zone

e To enable fast matching, DNSSEC has the notion of keytags
(first introduced in draft 01 of what became RFC 2535 in August 1997)

e These are 16-bit values included in RRSIG records and can help a resolver
find a matching key

e They are only a hint; the idea is that it is unlikely for keytag collisions to
occur in a DNSKEY set, so they help match keys to signatures in most cases

\
c NLNETLABS
A\

Introduction

e Some years ago, Roy Arends presented at DNS OARC on the curious
case of the unused keytags [1]

e He generated large numbers of keys, and found that only between a
quarter and half out of the 65536 possible keytags occurred

e Due to mathematical properties of RSA keys and how the keytag
algorithm computes the tag from the key's RDATA

[1] https://slideplayer.com/slide/10329289/

\
c NLNETLABS
A\

In this talk

e \While - with a generous community effort - Roy managed to explain why
certain keytags do not occur in theory

* |n this talk we look at what keytags occur in practice

e And draw lessons from this for protocol design (or: why we should
have picked a different, simple algorithm for keytag computation)

\
c NLNETLABS
A\

Quick refresher: keytag algorithm

e Assuming "self" is a Python DNSKEY object, this is the algorithm:

(self): ® Basically accumulate even bytes in
aCC = ()
| | the lower 8 bits, odd bytes in the
wire = self.towire() high 8 bits, and do some fiddling
i (0, len(wire)): with carry bits
1 &1 == 1:

acc += wire[1] | .
: ® The outcome of this algorithm
acc += wire[1] << 8

highly depends on the amount of
acc += (acc >> 16) & Oxffff structure and predictability in the

i I
acc & Oxffff InFDUt'

\
c NLNETLABS
A\

RSA keys have a lot of structure

Skipping the details (which can be tfound in Roy Arends' OARC
oresentation), RSA keys have a lot of structure

E.g. due to the modulus always being odd, use of safe primes in key
generation, strong preference for certain public exponents, ...

Also: flags, protocol version and algorithm are also included in the
computation!

In the OARC presentation, there was talk of either 16384 or 32768
possible keytags (but did not take every case into consideration)

\
c NLNETLABS
A\

What happens in practice?

e Experiment discussed at OARC relied on generating lots of keys
e \What we wanted to know: what happens in the wild?

e \We took one recent day of data from OpenINTEL for .com and .nl and
looked at two things:

e Keytags in the wild for RSA and ECDSA

e Keytag collisions in the wild for RSA and ECDSA

\
c NLNETLABS
A\

What we expect to find

e As stated, RSA keys contain a lot of structure, and the keytag algorithm
output is influenced by structure

e \We expect to find:
e That certain keytags are much more common for RSA keys
e That keytag collisions occur in the wild for RSA keys

e That the occurrence of keytags for ECDSA is much more uniformly
distributed due to a lack of structure in ECDSA keys

\
c NLNETLABS
A\

Heatmaps for RSA keytags

200
150
100

50

.COIM N

\
@ NLNETLABS

Distribution of RSA keytags in .com

2000 -
1500

1000

Sm% ‘||||||“‘|‘|‘|"ll‘““ll“l““l|“|“‘||||“|‘|||“||ll
i IIIIIIIIIIIIIII..III ____________ -
0
0 25 50 7S

Number of occurrences

e Takeaway: some keytags occur only once, a few keytags occur over 75

Number of keytags

100

times more often than that

\
@ NLNETLABS

Distribution of RSA keytags in .nl

00000

Number of keytags

|I.
0

e \Why the difference? Different distribution in algorithms and key sizes!

) .||I||||||“"“‘““‘“"|‘““““‘“‘“‘||||||||II|||I|||||II||||||||||||||“““‘||||||||||||||‘|‘““‘|‘|"|‘||||||||||"““‘llllllllll“llllmn _
200

Nmb of o

\
@ NLNETLABS

So what about ECDSA?

\
,) NLNETLABS

Number of keytags

1

00000

00000 II III
0

ECDSA keytag distribution

Nmb f

 This looks much more like a Gaussian distribution (but isn't quite)

\
@ NLNETLABS

Collisions

e Searched for collisions in OpenINTEL, by computing keytags for
DNSKEY RRsets for all signed domains in .nl over 3 years of data

e Distinguish between two types of collisions:

e "Real” collisions, where two or more different keys in the keyset of
the same algorithm and size have the same keytag

e "Semi" collisions, where two or more different keys in the keyset have
the same key tag, but have a different size or algorithm

\
c NLNETLABS
A\

Collisions over time

60 -

40 -

.Collisions
.Semi—collisions

Number of (semi-)collisions

20 -

2016 2017 2018 2019

\
@ NLNETLABS

How rare are collisions?

e |f keytags were uniformly distributed, we would expect the birthday
paradox to apply, with n the number of keys and d the number of
possible keytags; table shows this theoretical vs. actual probability

#tkeys in DNSKEY set Theoretical probability Observed probability

y. 0,00153% 0,00122%
3 0,00458% 0,00322%
4 0,00915% 0,01616%
5 or more 0,01526% 0,00148%

\
@ NLNETLABS

Real-world impact

Keytags are only intended as a hint for resolvers; they should never
solely rely on them to identify the correct key for signature validation

While very rare in practice, collisions have a real impact

A collision forces resolvers to validate signatures against all keys that
have a matching key tag until the correct key is founa

This will lead to extra CPU intensive cryptographic operations, that
cause a small, but quantifiable increase in load on validating resolvers

\
c NLNETLABS
A\

What could we do differently?

Clearly, the keytag algorithm appears not optimal for its purpose, but
appears to make collisions less likely than expected

So what would happen if we used something that produces a random
uniform output, regardless of any structure in the input?

(Cryptographic) hash functions have this property, but are likely much
more computationally intensive

Yet there is a middle ground: what if we used CRC16?

\
c NLNETLABS
A\

keytag vs. CRC16 for .nl

Heatmap

110

-
O

\

9) NLNETLABS

-

CRC16

Number of keytags

2500 -

2000 -

—h
o)
)
o
i

1000 -

500 -

O_

80

.nl RSA CRC16 distribution

100 120 140
Number of occurrences

\
@ NLNETLABS

s it actually better?

100 -

75~

.Collisions
.Semi—collisions

Number of (semi-)collisions
)
o

25 -

2016 2017 2018 2019

\
@ NLNETLABS

Why is CRC16 not better?

e Random uniform (-like) distribution means; any keytag is equally likely

e Due to the Generalised Birthday Paradox, the likelihood of a collision
increases with the number of keys in a keyset

#tkeys in DNSKEY set Theoretical probability Observed probability

2 0,00153% 0,00165%
3 0,00458% 0,00465%
4 0,00915% 0,02349%
5 or more 0,01526% 0,00853%

\
@ NLNETLABS

Open questions

e The unspoken assumption for the empirical data is that implementations
don't already prevent collisions from occurring

* For some, this assumption may not hold (e.g. LDNS, BIND)

e Can we fingerprint the crypto libraries used based on what we know
from Roy's presentation and the distribution we observe?

\
c NLNETLABS
A\

Conclusion: what did we learn?

At first glance, the original keytag algorithm seems suboptimal

Yet choosing something "better" in terms of the likelihood of values
occurring turns out to be worse!

This is at least an interesting lesson in protocol design; without really
meaning to, the writers of the DNSSEC RFCs picked a "better" algorithm

it we literally translate a Dutch phrase for this, they were:
"Unknowingly capable" ;-)

\
c NLNETLABS
A\

Operator and implementer advice

e Operators: it your domain is important and likely to be queried (very)
frequently, then make sure you have no keytag collisions in your DNSKEY
set -- the probabilities show that the chances of requiring more than one
extra key generation is vanishingly small

* Implementers: consider (optionally) checking DNSKEY sets for keytag
collisions and regenerate key(s) it a collision occurs

e Arguably: follow Postel's Law!

\
c NLNETLABS
A\

Thank you! Questions?

[nl.linkedin.com/in/rolandvanrijswijk
@ @reseauxsanstil

roland@nlnetlabs.nl

\
g NLNETLABS

