

RIPE Atlas

Ethical and Security Aspects of Running an IoT Network

RIPE Atlas Infrastructure

RIPE Atlas is a **global**, **open**, **distributed** Internet measurement platform, consisting of thousands of measurement devices that measure **Internet connectivity** in real time.

(wikipedia)

RIPE Atlas Use Cases

- Measuring Internet access disruptions
 - Internet Access Disruptions in Turkey
 - Internet Access Disruption in Gambia
- Measuring DNS censorship and hijacking
 - Using DNS Servers in Iran
 - DNS Censorship
- Monitoring connectivity problems
 - Monitoring Game Service Connectivity
 - Measuring Cloud Connectivity
 - Debugging Network Connectivity Problems

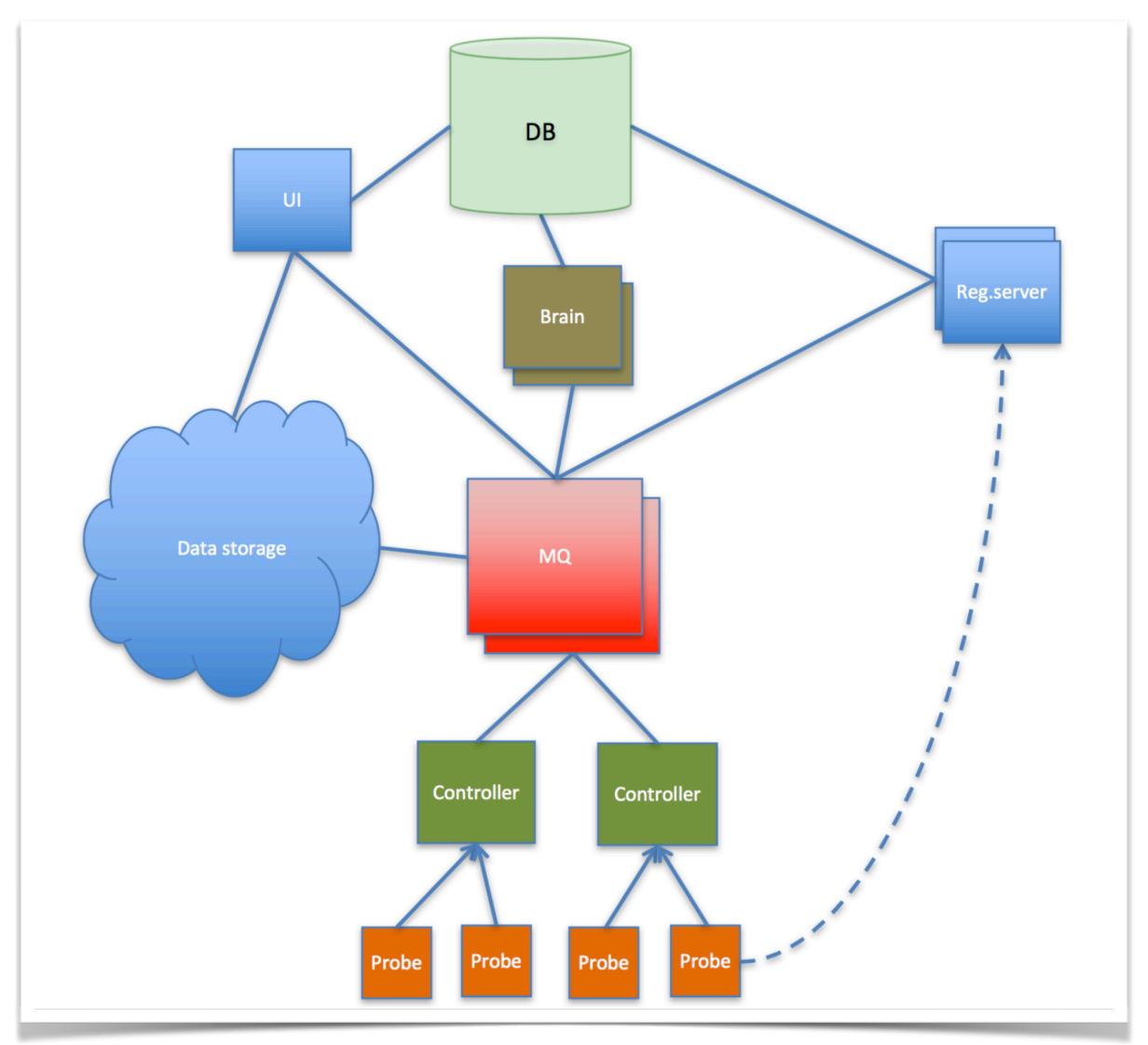
RIPE Atlas in Numbers

- 10,000 probes and 400 anchors connected worldwide
- 5.6% IPv4 ASes and 9% IPv6 ASes covered
- 181 countries covered
- 7,000 measurements per second

Design Principles

- Low, cheap barrier of entry
- Active measurements only
 - Probes do not observe user traffic
- Data, API, tools, source code: FREE and OPEN
- Set of measurement types limited
 - ping, traceroute, SSL/TLS, NTP, HTTP (limited)
- Strong community involvement from the start

Ethical Considerations


- No bandwidth measurements
 - Other platforms provide that service
- HTTP measurements only towards RIPE Atlas anchors
 - Otherwise it would rely on hosts' bandwidth
 - And might put volunteer at risk
- We encourage users to think about ethical considerations
 - Ethics of RIPE Atlas Measurements

Securing RIPE Atlas

RIPE Atlas Architecture

How We Limit Consequences (1)

- Prevent re-use and re-purposing of probes
 - Decided against Trusted Platform Model (TPM)
 - Instead, we use cheap devices and discourage re-using them
 - Accepting possible loss of probes
- Initialisation procedure before distribution
 - Off-the-shelf firmware gets replaced with RIPE Atlas firmware
 - Generating and registering individual keys
 - Testing

How We Limit Consequences (2)

- Trust anchors installed on all probes
 - Two-way authentication; unique SSH key for probes and for identification
- Regular firmware updates
 - All firmware updates are signed
 - Pre-installed public keys to verify firmware signature before upgrading
- Mechanisms to detect unwanted behaviour
 - We're looking for outliers or protocol violations
- No direct services to host or network
 - No local configuration possible; reduces network-based attack surface

Firmware Upgrades

- Done in a "lazy fashion"
 - Upgraded next time probes connect to RIPE Atlas infrastructure
 - We have means to force them to upgrade faster
- Each update is cryptographically verified

Best Current Practices

- IETF draft document: BCP for Securing IoT Devices
 - https://tools.ietf.org/html/draft-moore-iot-security-bcp-01

- RIPE Labs: https://labs.ripe.net
 - RIPE Atlas Probes as IoT Devices
 - RIPE Atlas Architecture How we Manage our Probes