Introduction 0000 ISP Environment

# Available Bandwidth Estimation Problem Network Calculus in Practice

Katarzyna Wasielewska

The State University of Applied Sciences in Elblag The Institute of Applied Informatics

RIPE 78 | Reykjavik | 20-24 May 2019

| Introduction<br>0000 | ISP Environment<br>000000000 | Conclusions |
|----------------------|------------------------------|-------------|
|                      |                              |             |

## Outline

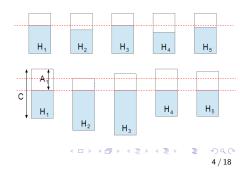
- Introduction and motivation
- ② Simulations
- Sesults of experiments in the ISP environment
- Conclusions

| Introduction | ISP Environment | Conclusions |
|--------------|-----------------|-------------|
| ●000         |                 |             |

## Available bandwidth at the node

Available bandwidth A is the difference between the capacity of the system Cand current bandwidth usage H.




| Introduction | ISP Environment | Conclusions |
|--------------|-----------------|-------------|
| 0000         |                 |             |
|              |                 |             |

#### Available bandwidth on the path

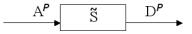
Available bandwidth B on the route at the time t means **unused bandwidth** which an application can use without any influence on the transmission quality of existing flows on this route.

$$B(t) = \min_{1 \leq i \leq n} \{A_i(t)\}$$

- verification of SLA
- route selection
- network traffic engineering
- resource access control



| Introduction | ISP Environment | Conclusions |
|--------------|-----------------|-------------|
| 0000         |                 |             |


### Available bandwidth estimation methods

# There are a lot of different available bandwidth estimation methods **but no one is perfect**

| Introduction | ISP Environment | Conclusions |
|--------------|-----------------|-------------|
| 0000         |                 |             |
|              |                 |             |

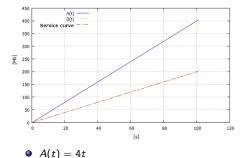
### LFV method

Passive measurement based method



 $A^{p}$  and  $D^{p}$  are the arrival and departure functions measured from a traffic trace of one or more flows.

 $A^{\rho}(t)$  is the sum of bits incoming to the system in time from 0 to t.  $D^{\rho}(t)$  is the sum of bits outcoming from the system in time from 0 to t.


Service curve  $\tilde{S}$  is the best possible estimate of the actual service curve S (describing available bandwidth) that can be justified from measurements of  $A^p$  and  $D^p$  ( $\tilde{S} \leq S$ ).

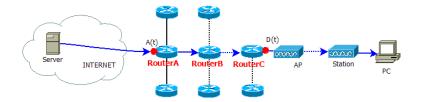
J. Liebeherr, M. Fidler, S. Valaee, A system-theoretic approach to bandwidth estimation, IEEE/ACM Transactions on Networking, vol. 18, no. 4, pp. 1040-1053, 2010

| Introduction | Simulations | ISP Environment | Conclusions |
|--------------|-------------|-----------------|-------------|
| 0000         | •           | 000000000       | 00          |
|              |             |                 |             |

# Simulation

• D(t) = 2t

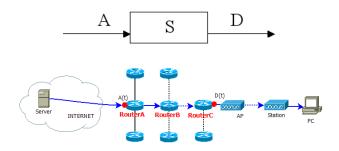



- Traffic arrives faster than it can be served
- $D(t) \leq A(t)$
- The estimate of the service curve covers the departure function D(t)

Notice that we have no information about capacity of the system.

| Introduction | ISP Environment | Conclusions |
|--------------|-----------------|-------------|
| 0000         | ●0000000        | 00          |
|              |                 |             |

# The objective


To use and verify the service curve  $\tilde{S}$  based on the measurements in the real ISP network

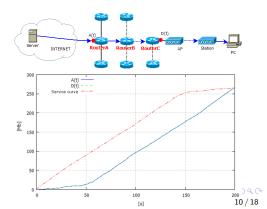


| Introduction<br>0000 | ISP Environment<br>00000000 | Conclusions<br>00 |
|----------------------|-----------------------------|-------------------|
|                      |                             |                   |
|                      |                             |                   |

# Methodology

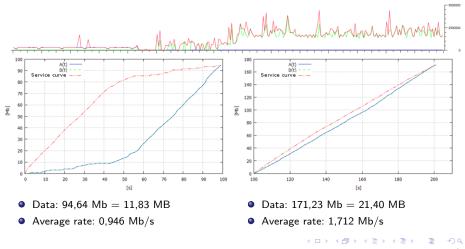
- Capture the Internet traffic on the selected interfaces
- **②** Generate time series for A(t) oraz D(t) functions
- Solution Calculate values of the service curve  $\tilde{S}$  (LFV method)




| Introduction | ISP Environment | Conclusions |
|--------------|-----------------|-------------|
| 0000         | 00●000000       | 00          |
|              |                 |             |

# CASE 1: Network service curve - aggregated flows (1/2)




Red color - the total traffic generated to the customer Green color - the sum of flows  $F_1$ - $F_4$ Blue color - the flow  $F_5$ 

- Measurement length F<sub>1</sub>-F<sub>4</sub>: 200 s (from 100th to 300th)
- Amount of data: 265,86 Mb
- Average rate: 1,329 Mb/s
- Max rate: ok. 1,7 Mb/s
- Possible rate: 6,41 Mb/s
- Difference: ok. 4,7 Mb/s



|  | ISP Environment | Conclusions |
|--|-----------------|-------------|
|  | 00000000        |             |
|  |                 |             |

# CASE 1: Network service curve - aggregated flows (2/2)



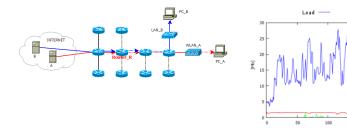
| Introduction<br>0000 | ISP Environment<br>0000●0000 | Conclusions |
|----------------------|------------------------------|-------------|
|                      |                              |             |

#### Specification of traffic probes

| Direction | Duration | Time scale     | Amount of observations |
|-----------|----------|----------------|------------------------|
|           | Servi    | ce curve of th | e node                 |
|           | 5min     | 1s             | 300                    |
| Download  | 1min     | 100ms          | 600                    |
|           | 1s       | 1ms            | 1000                   |
|           | 100ms    | $100 \mu s$    | 1000                   |
|           | 5min     | 1s             | 300                    |
| Upload    | 1min     | 100ms          | 600                    |
|           | 1s       | 1ms            | 1000                   |
|           | 100ms    | $100 \mu s$    | 1000                   |
|           | Net      | work service   | curve                  |
|           | 5min     | 1s             | 300                    |
| Download  | 1min     | 100ms          | 600                    |
|           | 1s       | 1ms            | 1000                   |
|           | 100ms    | $100 \mu s$    | 1000                   |
|           | 5min     | 1s             | 300                    |
| Upload    | 1min     | 100ms          | 600                    |
|           | 1s       | 1ms            | 1000                   |
|           | 100ms    | $100 \mu s$    | 1000                   |

Flow A

150


[s]

Flow B

250

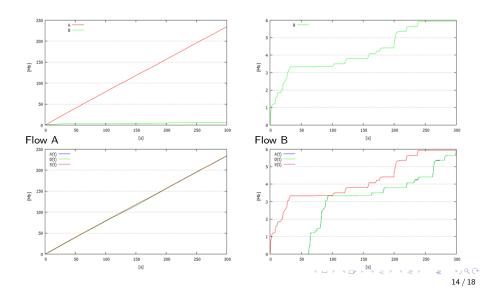
300

# CASE 2: Traffic flows (A - HTTP, B - HTTPS) (1/4)



#### Average rate in the node: 17,7 Mb/s

|        | Amount<br>of packets | Amount of data<br>which arrive to<br>the node [B] | Average rate<br>[Mb/s] | Amount of data<br>which leave the<br>node [B] | Average rate<br>[Mb/s] |
|--------|----------------------|---------------------------------------------------|------------------------|-----------------------------------------------|------------------------|
| Flow A | 21497                | 30670366                                          | 0,818                  | 30670366                                      | 0,818                  |
| Flow B | 812                  | 780366                                            | 0,026                  | 779694                                        | 0,026                  |

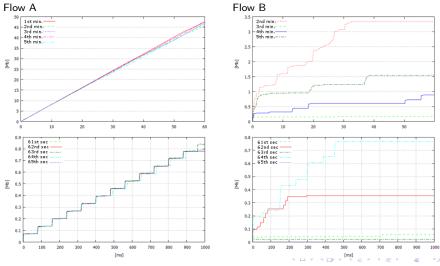

200

Simulatio

ISP Environment

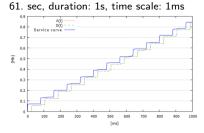
Conclusions

# CASE 2: Traffic flows (A - HTTP, B - HTTPS) (2/4)

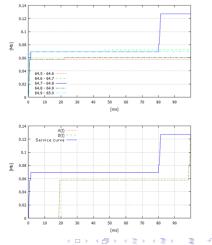



| Introd |  |
|--------|--|
|        |  |

#### Simulatio


ISP Environment

# CASE 2: Traffic flows (A - HTTP, B - HTTPS) (3/4)




|  | ISP Environment | Conclusions |
|--|-----------------|-------------|
|  | 00000000        |             |
|  |                 |             |

# CASE 2: Traffic flows (A - HTTP) (4/4)



| Time [s] | Incoming data [b] | A(t)   | Outcoming data [b] | D(t)   |
|----------|-------------------|--------|--------------------|--------|
| 61.824   | 0                 | 673712 | 0                  | 673712 |
| 61.825   | 0                 | 673712 | 0                  | 673712 |
| 61.826   | 12112             | 685824 | 0                  | 673712 |
| 61.827   | 60560             | 746384 | 72672              | 746384 |
| 61.828   | 0                 | 746384 | 0                  | 746384 |
| 61.829   | 0                 | 746384 | 0                  | 746384 |



#### 61. sec, duration: 100ms, time scale: $100\mu s$

| Introduction | ISP Environment | Conclusions |
|--------------|-----------------|-------------|
| 0000         | 000000000       | ●0          |
|              |                 |             |

# Conclusions

- The estimate of service curve based on the LFV method represents **possibility of bandwidth usage** and provides the evaluation of available bandwidth for the selected traffic at the single node as well as on the path of interconnected nodes
- Estimation of available bandwidth based on LFV is possible for selected single flow as well as agregats of flows (IP addresses, single IP address, services)
- LFV method has advantages and disadvantages
- The shorter time scales give more accurate (but not always useful) results

# Thank you

Katarzyna Wasielewska E-mail: k.wasielewska@pwsz.elblag.pl