
Technology Deep Dives

An Experiment

Deep dives?

• A discussion on a particular wide topic.

• Focus on concepts, not necessary on the details.

• More on architecture and design.

• Less on implementation and deployment.

• Network engineering minus vendor marketing.

This is an experiment

• We need your feedback.

• Hallway discussions indicated that this may be interesting.

• Community education.

Modern Router Architectures

A fairy tale of spherical routers in vacuum

Credits: John Scudder, Frank Brockners, Toerless Eckert, Brian Petersen, Alvaro Retana, Spencer Dawkins, Warren Kumari

What?

• A brief look at how a (modern) router operates.

• Intentionally substantially simplified view.

• Focus on core principles and not on details.

• This is not a tutorial on how to build a router.

• This is not a tutorial on how to operate a router.

Why?

• Misconceptions of what a router does.

• Misconceptions of how a router does it.

• Misconceptions related to Software Defined <whatever>.

• Similar content was presented at IETF 104 – with a quite positive
feedback.

• Community education.

Conceptual components

• Control plane complex.

• Forwarding complex.

• Interconnection fabric.

Control Plane

Fabric

Forwarding Forwarding Forwarding

Interface Interface Interface

Control Plane Complex

• Control plane complex.

 Control plane protocols and exception path processing.

• Also can be used for forwarding – at a huge cost and
performance/functionality hit.

Forwarding Complex

• Actual packet forwarding – move from ingress to egress.

• Flexibility varies greatly (x86 to custom purpose-built)

• L2 & L3 analysis & features

• Figure out whose packet it is, what should happen to it, where it should go.

• Packet buffering

• Store the packet in buffer memory until there’s room to transmit it

• Queuing & scheduling

• Decide which packets should go in what order to achieve fairness and delivery
guarantees.

• Forwarding components may be micro-programmable, table-driven or hard-coded

• It’s the old cost/performance/flexibility trade-off matrix.

• Forwarding components may be totally integrated (the features, buffering, and
scheduling may all be on a single chip) or they may be separated into different physical
devices

Interconnection Fabric

• Responsible for moving packets from one forwarding component to
another.

• Fabric within a single entity (fabric on a chip).

• Fabric between different entities

 Between components on the same linecard.

 Between linecards.

 Between shelfs.

Hardware vs software way of thinking

• Software is sequential – lookup this, then lookup that, then write
that.

• Hardware can be parallel – lookup this and lookup that and write that
all at the same clock cycle.

Hardware vs software way of thinking

• Wait – processors have many cores and software has threads?

 True. This does not mean free speedup though.

• Parallel software is not easy.

• Parallel hardware is expensive.

Specialized vs general purpose processors

• Traditional computer architectures (e.g., x86) are “infinitely” flexible – but at a
cost.

• High-performance routers trade flexibility for other important attributes

Example tradeoff: Access to packet Data:

• General-Purpose Processors are presented with a buffer containing an entire
packet

• Pipeline (et al) are presented with the first some bytes of a packet

• The trick is to only trade away flexibility you didn’t need anyway.

• But predicting the future is hard (“wait, you want to look how deep?”)

• This is where protocol designers can help

HW and SW interaction

• Programmable processors need instructions -> memory access.

• Programmable processors need data to work on -> memory access.

• Programmable processors threat packet as a buffer -> easy (but not
necessary cheap access).

• Fixed pipeline processors do not need instructions.

• They still need access to data.

• And are (severely) limited by what they can access.

HW and SW interaction

• Instructions live in memory and are infinitely flexible, but relatively
slow.

• Logic gates are fast and massively parallel.

• Complex logic and math can operate at a blazing speeds.

• But gates are hard-wired and cannot be changed.

• Replacing logic gates with memory-based tables enables flexibility,
but decreases efficiency

HW and SW interaction

• Pipelines break down processing into bite-sized chunks

 Parsing, receive context, destination lookup, etc.

 Each stage performs a specific operation and delivers results to
the next stage

 Stages can be made more complex - at the expense of trading
speed for complexity

 Ideally, the stages work on header data sequentially

 Out-of-order parsing or loops in the parse tree (e.g. overloaded
next header type in MPLS) can pose significant challenges

HW and SW interaction

• Forwarding component design is always a set of tradeoffs between
complexity and speed.

• Processing with a programmale instruction sets are really flexible, but also
really slow.

• Processing everything in a tightly integrated pipeline is really fast, but much
less flexible (or totally inflexible at the end-case)

• In reality, all NPU designs are a series of tradeoffs trying to optimize around
some very precious resources.

• Transistor counts: Every gate used for processing a packet cannot be used
for another interface (i.e. a port-density for features tradeoff)

• Memory depth and access rate – to process a billion packets per second
where each requires 10 lookups means 10 billion memory lookups per
second.

HW and SW interaction

• If dedicated processing pipelines are limited, why bother? In a word:
efficiency

• Operations per packet per Watt is much higher.

• Throughput per unit volume is far higher

• It is not uncommon for a pipeline to sustain 500M–1B packets per
second.

• Which is 50–100 times faster than a commodity x86 platforms can do.

Power concerns

• Power is a hard requirement.

• Power in (current) and power out (cooling).

• Physical limitations tend to be stronger than logical limitations.

Gates

• Any hardware functionality requires gates.

• Laws of physics apply to gates.

• Throughput vs logical complexity.

Memory

• Memory has finite access speed.
• Random vs local vs sequential access.
• Memory size vs access speed.
• MPLS direct lookup is practical. Hierarchical MPLS lookup is tricky though.
• IPv4 direct lookup is feasible, but not practical.
• IPv6 direct lookup is just not feasible at all.
• Memory power considerations.
• Memory width vs memory speed.
• Different memory types for different tasks.
• Control plane data input and output.

Memory subsystem

Input context
Forwarding
lookup

Accounting

Match
properties

Map to
context

Prefixes Counters

Memory of different type, width, and capacity

Electrical Interface

• Memory and fabric interfaces, host CPU interface, assorted support
circuitry – all that are electrical signals.

• Several thousand of signal pins per component package are not
uncommon.

• There are practical limitations related to power feed, signal integrity,
and package physical dimensions.

• Single component platforms have rather low physical scalability limits.

NPUs

• A rather abused term.

• Ranging from rebranded generic processors to highly customized and
highly specialized non-programmable processing components.

• NPU does not equal to unlimited packet processing performance.

Spherical Routers

Open Discussion

Technology Deep Dives

Open Discussion

Technology tutorials

• Focus on specific area of technology.
• Focus on architectural aspects and protocol mechanics – not vendor

implementation aspects.

• Possible examples:
• How BGP and global routing works.
• How L3VPN works.
• How DNS works.

Discussion

• What do you think?

 - Of the concept

 - Of the topic

• Did you see any value?

• Wishlist for other topics?

• Wishlist on format?

• Is RIPE meeting a right venue for this?

