
Charles Eckel, Cisco DevNet

RIPE 78 Tutorial, 20 May 2019

Model driven network
programming made easy by
open source

eckelcu@cisco.com, @eckelcu
Charles Eckel, Cisco DevNet

RIPE 78 Tutorial, 20 May 2019

Model driven network
programming made easy by
open source

eckelcu@cisco.com, @eckelcu

• Setup
• Introduction to APIs
• REST APIs
• Network programmability
• Hands-on exercises

Agenda

https://developer.cisco.com/join/ripe78

https://developer.cisco.com/join/ripe78

https://developer.cisco.com/learning/modules/intro-
device-level-interfaces

https://developer.cisco.com/learning/modules/intro-device-level-interfaces

Introduction to APIs

9

Application Programming Interface

”It’s a way for two pieces of software to talk
to each other”

For a time.. Humans were the only users

For a time.. Humans were the only users

User asks for data or
takes action by
interacting with UI

Software
displays results
in User Interface
(UI)

But what about when the user is another software
system….

Software asks for data
or takes action by
interacting with API

Software returns
results via API

My Software System

Your Software System

The API is the User
Interface for software
systems

APIs are sets of
requirements that govern
how one application can talk
to another.

APIs help developers create apps that benefit
the end user

Yelp asks for Map
Data

Google Maps
returns map data

via API

Users sees
list of

restaurants
close to

them

-- Programmable Web

“APIs are often referred to as “an
engine of innovation.”

REST APIs

REST Web service
• What is REST?

– REpresentational State Transfer
(REST)

– API framework built on HTTP

• What is a REST Web Service?
– REST is an architecture style for

designing networked applications.
– Popular due to performance, scale,

simplicity, and reliability

18

Request and Response, the REST API Flow

1
9

Request and Response, the REST API Flow

2
0

Request and Response, the REST API Flow

HTTP Methods: What to do?

HTTP Verb Typical Purpose (CRUD) Description

POST Create Used to create a new object, or resource.
Example: Add new book to library

GET Read Retrieve resource details from the system.
Example: Get list of books from the library

PUT Update
Typically used to replace or update a resource. Can be used to modify
or create.
Example: Update the borrower details for a book

PATCH Update Used to modify some details about a resource.
Example: Change the author of a book

DELETE Delete Remove a resource from the system.
Example: Delete a book from the library.

Response Status Codes: Did it work?
Status Code Status Message Meaning

200 OK All looks good

201 Created New resource created

202 Accepted Accepted for processing, but processing not completed

204 No Content Request succeeded, but no message body returned

400 Bad Request Request was invalid

401 Unauthorized Authentication missing or incorrect

403 Forbidden Request was understood, but not allowed

404 Not Found Resource not found

500 Internal Server Error Something wrong with the server

503 Service Unavailable Server is unable to complete request

2xx

5xx

4xx

The URI: What are you Requesting?

• Resource
• The location of the data or object of

interest

• Parameters
• Details to scope, filter, or clarify a request.

Often optional.

• http:// or https://
• Protocol over which data is sent between

client and server
• ‘s’ in https stands for secure

• Server or Host
• Resolves to the IP and port to which to

connect

https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

Server or Host Resource Parameters

https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

Data: Sending and Receiving
• Contained in the message body
• GET responses will include a

message body
• POST, PUT, PATCH requests

typically include a message body
• Format typically JSON or XML

• Check “Content-Type” header

2
5

{
"success": true,
"deck_id": "3p40paa87x90",
"shuffled": true,
"remaining": 52

}

Headers:
Header Example Value Purpose

Content-Type application/json Specify the format of the data in the body

Accept application/json Specify the requested format for returned data

Authorization Basic dmFncmFudDp2YWdyYW50 Provide credentials to authorize a request

Date Tue, 25 Jul 2017 19:26:00 GMT Date and time of the message

What additional details and metadata can I use?

• Used to pass information between client and server

• Included in both REQUEST and RESPONSE

• Some APIs use custom headers for authentication or other purpose

Review:
Request/Response

HTTPS/1.1 200 OK
Date: Wed, 23 Jan 2019 23:12:11 GMT
Content-Type: application/json;charset=UTF-8
Content-Encoding: gzip
Content-Length: 323
Trackingid: ROUTER_5C48F4B1-9789-01BB-4148-xxxxxxxxx
Vary: Accept-Encoding
Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

{
"id":
"Y2lzY29zcGFyazovL3VzL1BFT1BMRS9iODBjM2NmOC01ZGIwLTQyNzAtOThiZS1mYzFhYjA3MzE1YWE",
"emails": ["eckelcu@cisco.com"],
"displayName": "Charles Eckel",
"nickName": "Charles",
"firstName": "Charles",
"lastName": "Eckel",
:
"status": "active",
"type": "person”
}

GET /v1/people/me HTTPS/1.1
Host: api.ciscospark.com
Authorization: Bearer <redacted>
Accept: */*
Accept-Encoding: gzip, deflate, sdch
Connection: keep-alive
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/49.0.2623.112 Safari/537.36

Request: GET https://api.ciscospark.com/v1/people/me

Response: 200 OK + Data

HTTPS Request

Request Headers

HTTPS Response

Response Headers

Response Payload

<blank line>

Note: This is all exchanged as simple text
over a TCP/TLS connection.

Many Options for Working with REST APIs
• Web browser

• Chrome, Firefox, etc.

• curl
• Linux command line application

• Postman
• API testing application and framework

• Requests
• Python library for scripting

• OpenAPI/Swagger
• Dynamic API Documentation

Web Browser
https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

30

Web Browser
https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

31

Web Browser
https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

curl
$ curl
https://deckofcardsapi.com/api/deck/new/shuffle/?deck_count=1

{"success": true, "shuffled": true, "deck_id": "sr405eihisjl",
"remaining": 52}

3
2

Postman

Postman

Python

Network programmability

Why Network Programmability Matters

0

100%

67%

Source: Forrester
CAPEX OPEX

33%
0 10 100 1000

Computing Networking

Seconds
Source: Open Compute Project

Network Expenses Deployment Speed

The Need for Something Better
• SNMP had failed

• For configuration, that is
• Extensive use in fault handling

and monitoring

• CLI scripting
• “Market share” 70%+

Abstract

This document provides an overview of a
workshop held by the Internet Architecture
Board (IAB) on Network Management. The
workshop was hosted by CNRI in Reston, VA,
USA from June 4 thru June 6, 2002. The goal
of the workshop was to continue the
important dialog started between network
operators and protocol developers, and to
guide the IETFs focus on future work
regarding network management.configuration

RFC 3535

Best Practices Coming Together

YANG

YANG

• Modeling language, YANG version 1 [RFC6020],
YANG version 1.1 [RFC7950]

• Models configuration and state data, RPCs, and
notifications

• Defines semantics
• Constraints (i.e. “MUSTs”)
• Reusable structures
• Built-in and derived types

Data Modeling Language for Networking

YANG is a full, formal contract language with rich
syntax and semantics for network data

Protocol

Data Model

41

https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950

YANG Model
Example
• Screenshot from

ietf-interfaces.yang
• Container ‘interfaces' with list

of interface' items
• List items (leafs) have a ‘name'

which is also the key for the list

Finding YANG Models
https://github.com/YangModels/

https://github.com/YangModels/

Tools to work with YANG Models
• pyang - An extensible YANG validator and converter

• Command line tool
• Source Code - https://github.com/mbj4668/pyang
• Python Package - https://pypi.python.org/pypi/pyang

• YANG Catalog - YANG validator, search, and
impact tools
• Web Based
• https://yangcatalog.org/

• OpenDaylight YANG Tools
• Tools supporting NETCONF and YANG
• Code generation from YANG models
• https://wiki.opendaylight.org/view/YANG_Tools:Main

https://github.com/mbj4668/pyang
https://pypi.python.org/pypi/pyang
https://yangcatalog.org/
https://wiki.opendaylight.org/view/YANG_Tools:Main

pyang
$ pyang -f tree
<yang-file>

Yang Catalog
https://yangcatalog.org/yang-search/

https://yangcatalog.org/yang-search/

Building a Plugin/Application with
OpenDaylight YANG tools

ModelModel
Yang Model

Java API DefinitionJava API DefinitionGenerated API
Definition

Module
Implementations

Yang Tools

“Plugin”
OSGI Bundle

1

4

Generate APIs

Create Plugin Bundle
Deploy

Maven
Build Tools

Module
ImplementationsPlugin source code

“API”
OSGI Bundle

Maven
Build Tools

2

3

Create API Bundle

4
Deploy

Controller

NETCONF

NETCONF

• Defined in RFC 4741 (2006), updated by RFC 6241 (2011)

• Connection oriented, with transport via SSH/TSL

• Data defined by YANG models, encoded in XML

• Distinguishes between configuration and state data

• Multiple configuration datastores (candidate, running, startup)

• Change validation, transactions, filtering, and notifications

IETF network management protocol

NETCONF provides fundamental programming features
for convenient and robust automation of network services

49

NETCONF Sessions
• NETCONF is connection-oriented

• SSH, TLS as underlying transport
• XML for payload

• NETCONF client establishes session
with server

• Session establishment: <hello>
exchange
• Announce capabilities, modules,

features

• Session termination
• <close-session>, <kill-session>

NETCONF Commands
• get : to retrieve operational data
• get-config : to retrieve configuration data
• edit-config : to edit a device configuration
• copy-config : to copy a configuration to another data store (e.g. non-

volatile memory)
• delete-config : to delete a configuration in a data store

DevNet Always On Sandbox
• CSR1000V Host : ios-xe-mgmt.cisco.com

• SSH Port: 8181
• NETCONF Port: 10000
• RESTCONF Port : 9443 (HTTPS)

• Credentials:
• Username: root
• Password: D_Vay!_10&

http://ios-xe-mgmt.cisco.com/

Connect to DevNet Always on Sandbox

ECKELCU-M-H15L:ripe78 eckelcu$ ssh root@ios-xe-mgmt.cisco.com -p 8181
Password:

Welcome to the DevNet Always On Sandbox for IOS XE

This is a shared sandbox available for anyone to use to
test APIs, explore features, and test scripts. Please
keep this in mind as you use it, and respect others use.

The following programmability features are already enabled:
- NETCONF
- RESTCONF

Thanks for stopping by.

csr1000v#show run
Building configuration...

Current configuration : 5332 bytes
!
! Last configuration change at 16:55:51 UTC Fri May 17 2019 by root
!
version 16.8
service timestamps debug datetime msec
service timestamps log datetime msec
platform qfp utilization monitor load 80
no platform punt-keepalive disable-kernel-core
platform console virtual
!
hostname csr1000v

ssh root@ios-xe-mgmt.cisco.com -p 8181
ssh -oHostKeyAlgorithms=+ssh-dss root@ios-xe-mgmt.cisco.com -p 10000 -s netconf

ECKELCU-M-H15L:ripe78 eckelcu$ ssh -oHostKeyAlgorithms=+ssh-dss
root@ios-xe-mgmt.cisco.com -p 10000 -s netconf
root@ios-xe-mgmt.cisco.com's password:
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-
running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capabil
ity>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capa
bility>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capa
bility>
<capability>urn:ietf:params:netconf:capability:rollback-on-
error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:notification:1.0</
capability>
<capability>urn:ietf:params:netconf:capability:interleave:1.0</ca
pability>
<capability>urn:ietf:params:netconf:capability:with-
defaults:1.0?basic-mode=explicit&also-supported=report-all-
tagged</capability>
<capability>urn:ietf:params:netconf:capability:yang-
library:1.0?revision=2016-06-21&module-set-
id=88c694c75e847aba17e8ab19254ad090</capability>
<capability>http://tail-f.com/ns/netconf/actions/1.0</capability>
<capability>http://tail-f.com/ns/netconf/extensions</capability>
<capability>http://cisco.com/ns/cisco-xe-ietf-ip-deviation?module

NETCONF using ncclient – Python code
https://developer.cisco.com/learning/modules/intro-device-level-interfaces/intro-netconf/step/1

https://developer.cisco.com/learning/modules/intro-device-level-interfaces/intro-netconf/step/1

NETCONF using ncclient - Output
(venv) ECKELCU-M-H15L:netconf eckelcu$ python get_interface_list.py
Opening NETCONF Connection to ios-xe-mgmt.cisco.com

Sending a <get-config> operation to the device.

Here is the raw XML data returned from the device.

<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:10be2e92-4093-4307-8e80-e13c55b896ed" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">

<interface>
<name>GigabitEthernet1</name>
<description>DON'T TOUCH ME</description>

--- snip ---
<interface>

<name>Tunnel2</name>
<enabled>true</enabled>

</interface>
</interfaces>

</data>
</rpc-reply>

The interface status of the device is:
Interface GigabitEthernet1 enabled status is true
Interface GigabitEthernet2 enabled status is true
Interface GigabitEthernet3 enabled status is false
Interface Loopback0 enabled status is true
Interface Tunnel0 enabled status is true
Interface Tunnel1 enabled status is true
Interface Tunnel2 enabled status is true

RESTCONF

RESTCONF

• IETF RFC 8040

• Configuration and state data exposed as resources

• Access data using REST verbs (GET / PUT / POST …)

• Construct URIs, based on structure of YANG model, to access data

• HTTP instead of SSH for transport

• JSON in addition to XML for data encoding

Restful API for YANG data models

RESTCONF provides light weight interface to network datastores
leveraging well known combination of REST and JSON

57

RESTCONF URI & JSON Example
GET
https://{{host}}:{{port}}/restconf/data/ietf-interfaces
:interfaces-state/interface=GigabitEthernet1
{

"ietf-interfaces:interface": {
"name": "GigabitEthernet1",
"type": "iana-if-type:ethernetCsmacd",
"admin-status": "up",
"oper-status": "up",
"last-change": "2019-05-16T19:40:02.000393+00:00",
"if-index": 1,
"phys-address": "00:50:56:bb:18:c4",
"speed": "1024000000",
"statistics": {

"discontinuity-time": "2019-05-16T19:38:03.000573+00:00",
"in-octets": "5339802",
"in-unicast-pkts": "48925",
"in-broadcast-pkts": "0",
"in-multicast-pkts": "0",
"in-discards": 0,
"in-errors": 0,
"in-unknown-protos": 0,
"out-octets": "9405098",
"out-unicast-pkts": "17451",
"out-broadcast-pkts": "0",
"out-multicast-pkts": "0",
"out-discards": 0,
"out-errors": 0

}
}

}

Transport

High Level Manageability Architecture

Network DeviceApplication

RESTCONF
server

NETCONF
server

BGP

QoS

VXLAN
RESTCONF

client

NETCONF
client

YANG-based
XML/JSON

SSH / TLS

HTTPS

ANY (Java, Python,
Perl, PHP)

Manageability
Infra

Config
DB

YANG-based XML
ANY (C, Java,

Python)

RESTCONF with curl

$ curl -vk \
-u root:D_Vay\!_10\& \
-H 'accept: application/yang-data+json' \

https://ios-xe-mgmt.cisco.com:9443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet1

> GET /restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet1 HTTP/1.1
> Host: ios-xe-mgmt.cisco.com:9443
> Authorization: Basic cm9vdDpEX1ZheSFfMTAm
> User-Agent: curl/7.54.0
> accept: application/yang-data+json
>

The Request

• -u provides user:password for Basic Authentication

• -H to set headers

• Lines beginning with “>” indicate Request elements

• Lines beginning with “<” indicate Response elements (next slide)

RESTCONF with curl

< HTTP/1.1 200 OK
< Server: nginx
< Date: Fri, 25 Jan 2019 17:37:43 GMT
< Content-Type: application/yang-data+json
< Transfer-Encoding: chunked
< Connection: close
< Cache-Control: private, no-cache, …
< Pragma: no-cache
<

{
"ietf-interfaces:interface": {
"name": "GigabitEthernet1",
"description": "DON'T TOUCH ME",
"type": "iana-if-type:ethernetCsmacd",
"enabled": true,
"ietf-ip:ipv4": {
"address": [
{
"ip": "10.10.20.48",
"netmask": "255.255.255.0"

}
]

},
"ietf-ip:ipv6": {
}

}
}

The Response - Headers The Response - Body

RESTCONF with Postman

OpenDaylight YANG UI

Questions?

Thank you!

