
A First Joint Look at DoS Attacks and BGP Blackholing in the Wild

Mattijs Jonker

Aiko Pras (UTwente) Alberto Dainotti (CAIDA / UC San Diego) Anna Sperotto (UTwente)

UNIVERSITY OF TWENTE.

Denial-of-Service attacks

- A conceptually simple, yet effective class of attacks
 - ... that have gained a lot in popularity over the last years
 - ... are also offered "as-a-Service" (Booters)
- Some well-known incidents stipulate threat/risks
 - e.g., attacks on Dyn & GitHub (memcached)
 New world record DDoS attack hits 1.7Tbps days after landmark GitHub outage

Memcached denial-of-service attacks are getting bigger by the day, according to new analysis.

By Liam Tung | March 6, 2018 -- 12:34 GMT (04:34 PST) | Topic: Security

 DoS has become one of the biggest threats to Internet stability & reliability

BGP blackholing

- Is a technique that can be used to mitigate DoS attacks
- Leverages the BGP control plane to drop network traffic
- BGP communities are used to signal blackholing requests
 - by "tagging" prefix announcements with <asn:value>
 - 666 is is a common *value* for blackholing
- Is very "coarse-grained", meaning all network traffic destined to a prefix is indiscriminately dropped

A missing piece of the puzzle

Given its coarse-grained nature, we wonder if blackholing is used only in extreme cases

A clear understanding of how blackholing is used in practice when DoS attacks occur is missing

We use large-scale, longitudinal (3y) data sets on DoS attacks and blackholing to get more insights into operational practices

Part 1: Blackholed Attacks

UCSD Network Telescope [data set 1/3]

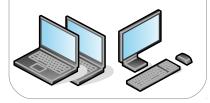
- A large, **/8** network telescope operated by UC San Diego
- Captures backscatter from DoS activity in which source IP addreses are randomly and uniformly spoofed
- We use the classification methodology by Moore et al. to infer DoS attacks [1]

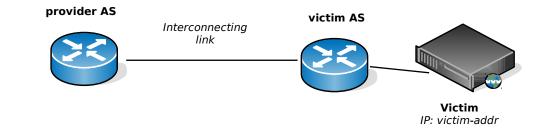
[1] Moore et al., "Inferring Internet Denial-of-service Activity", in ACM TOCS 2006

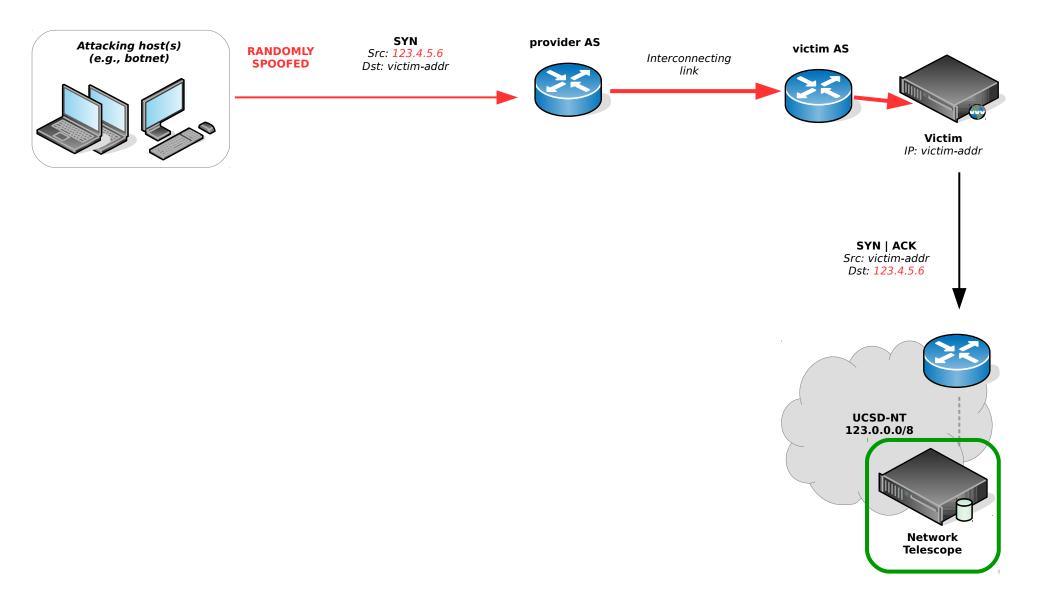
Amplification Honeypots [data set 2/3]

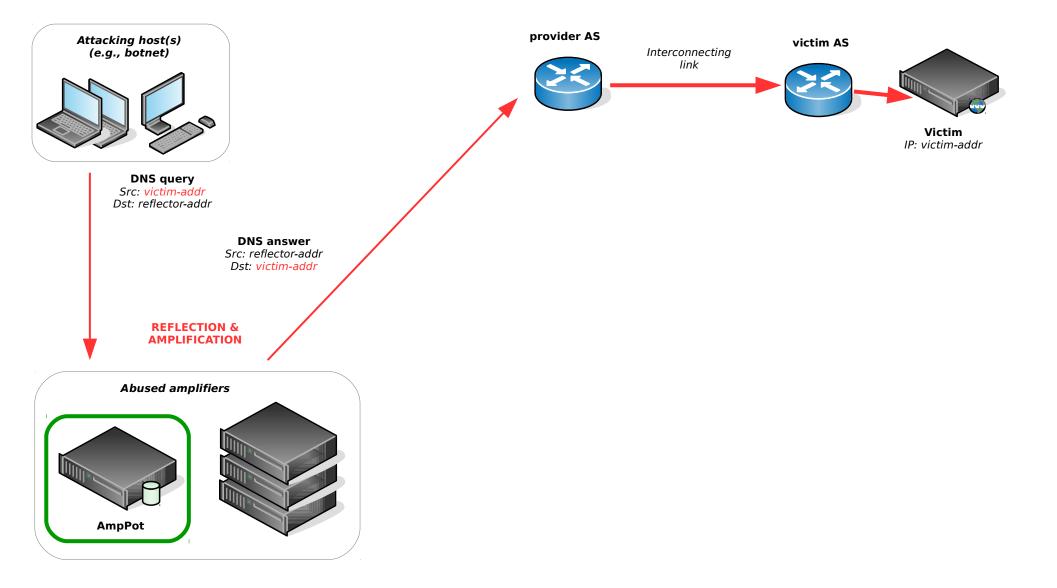
- Honeypots
 - ... mimick reflectors abused in *reflection* attacks (e.g., NTP)
 - ... try to be appealing to attackers by offering large amplification
 - ... capture attempts at reflection
- We use logs from 24 honeypot instances that are geographically & logically distributed
 - From the AmpPot project (Christian Rossow, CISPA) [1]

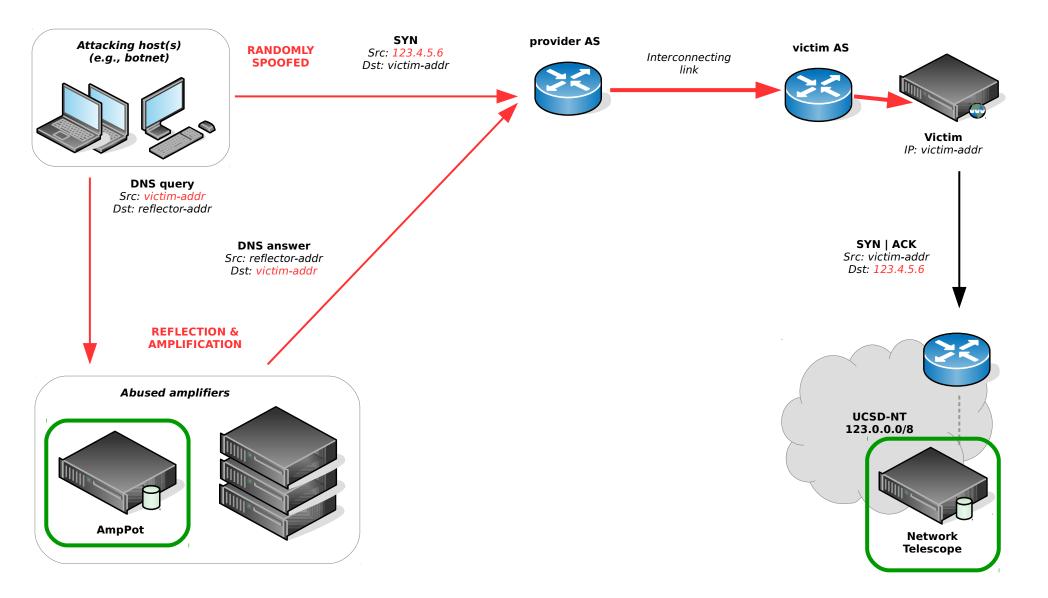
[1] Krämer al., "AmpPot: Monitoring and Defending Against Amplification DDoS Attacks", in RAID 2015

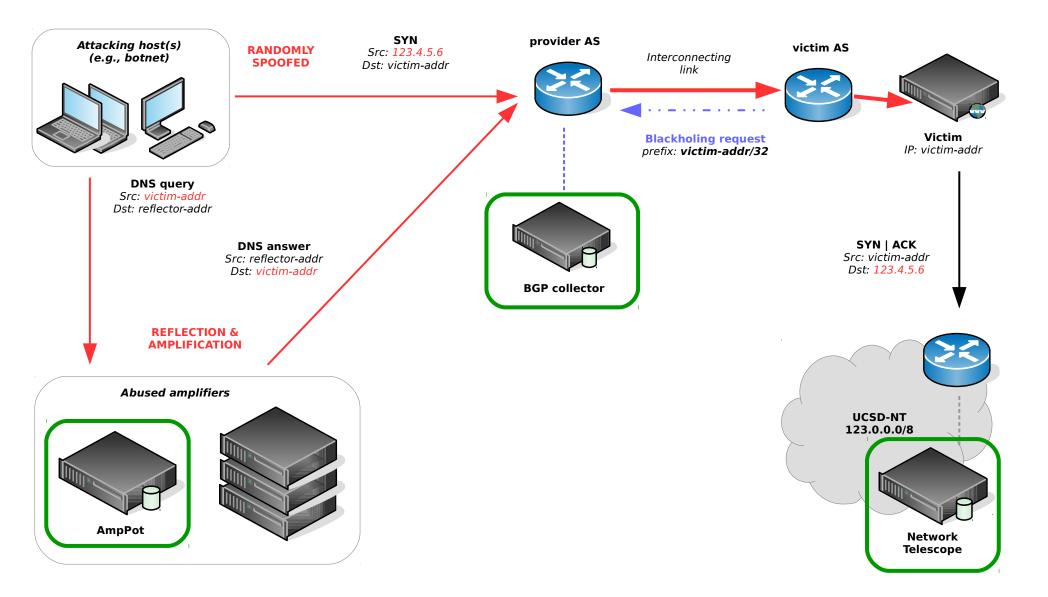

Inferred blackholing events [data set 3/3]

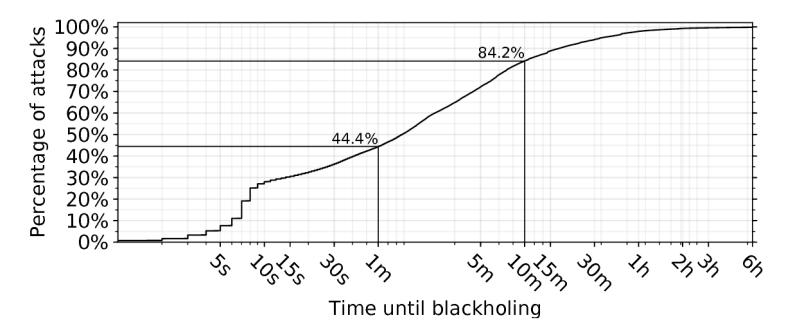

- Scan BGP collector data for blackholing activity, using public BGP data: RIPE RIS and UO Route Views
- Use BGPStream framework for BGP data analysis [1]
- Match BGP updates against dictionary of known BH communities [2]

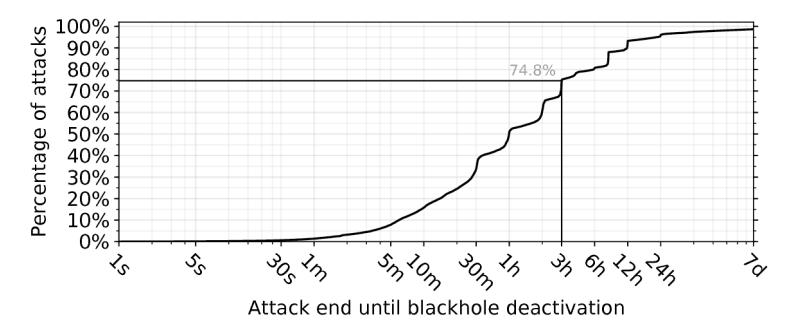

[1] Orsini et al., "BGPStream: A Software Framework for Live and Historical BGP Data Analysis", in IMC 2016


[2] Giotsas et al., "Inferring BGP blackholing activity in the internet", in IMC 2017 BGP STREAM

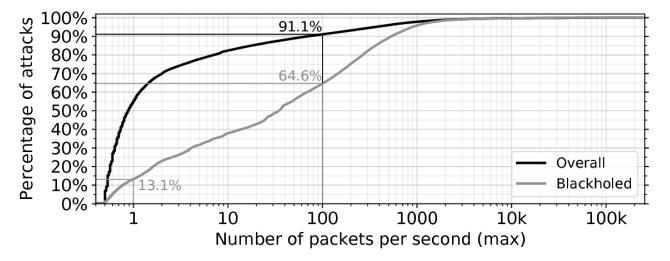

Attacking host(s) (e.g., botnet)







Attacks are mitigated within minutes


- More than half of attacks mitigated within minutes
 - 84.2% within **ten** minutes
 - takes longer than **six** hours for only 0.02%
- Suggest use of automated, rapid detection and mitigation

Blackholing endures after attacks end

- Deactivated within three hours following 74.8% of BH'd attacks
- For 3.9% it takes more than **24** hours
 - Suggests lack of automation in recovery
- Side effects of coarse-grained technique extend well beyond duration of attack

Less intense attacks are also BH'd

- ~2/3rd of **BH'd** attacks (against ~9/10th of **all** attacks) have an intensity of up to ~300Mbps (100pps),
- 13.1% see at most 3Mbps (1pps), showing that operators take drastic measures for less intense attacks
- Similar findings for *reflection attacks* (see paper)
- Results confirm Moore et al. methodology at scale (USENIX '01)
- Corroborates our previous finding of ~30k attacks/day (IMC '17) [1]

[1] Jonker et al., "Millions of Targets Under Attack: a Macroscopic Characterization of the DoS Ecosystem", Anti-IMC 2017 on the DoS Attacks and BGP Blackholing in the Wild

Attacks we do not see

Match blackholing events with preceding attacks

source	#BH events	#BH'd prefixes
UCSD-NT U AmpPot	363.0k / 1.3M (27.8%)	45.2k / 146.2k (30.9%)

- We match 27.8% of BH events with DoS attacks
- Results do not allow us to infer the fraction of other types of attacks (e.g., direct and unspoofed)
- However, highlights that *reflection* and *randomly spoofed* DoS represent a significant share of DoS that operators had to deal with

Part 2: Service Collateral

DNS Measurements [data set 1/2]

- Large dataset of active DNS measurements
- Provides mappings from IPv4 to:
 - Websites (www. $\rightarrow A RR$)
 - Mail exchangers (MX \rightarrow A)
 - Authoritative nameservers (NS \rightarrow A)
- We use .com, .net & .org (~50% of global namespace)

+vno	#profixes	#names associated		
type	#prefixes	overall	no-alt	ratio
Web	13.7k (9.3%)	782k	670k	0.86
Mail	2247 (1.5%)	180k	177k	0.98
NS	1176 (0.8%)	10k	10k	0.99

Reactive measurements [data set 2/2]

- Reactively measure blackholed /32s
 - Upon BH activation (i.e., announcement) and deactivation (i.e., withdrawal/re-announcement)
 - Subject to various heuristics (max 4 in /24, spacing, ...)
- Use RIPE Atlas to send traceroutes
 - From probes in *peer*, *customer* & *provider* networks
- Scan a handful of IANA-assigned ports
 - For Web, mail and DNS
 - From a single VP

Inferring blackhole (in)efficacy

Port probes

- Exclusively open state on *deactivation* \rightarrow infer efficacy
- Open on *activation* \rightarrow infer inefficacy
- Other cases \rightarrow inconclusive

Traceroutes

- Exclusively last_hop_is_destination on *deactivation* → infer efficacy
- last_hop_is_destination on *activation* → infer inefficacy

Port probe inferences

rochonco		#service	
response	Web	Mail	DNS
a ∪ d	2886	464	528
a ∩ d	6.98%	8.41%	11.36%
a ∖ d	0.38%	0.43%	0.76%
d∖a	92.64%	91.16%	87.88%

- Jointly, we infer efficacy in 95.25% of "coverable" cases
- The **a** \ **d** category is near-zero, which supports the chosen methodology

Trace route inferences

Broho		inferrence		
Probe network	#groups	Efficacy	Inefficacy	Π
peer	5.0k	29%	8%	1.0%
provider	5.4k	29%	6%	0.8%
customer	2.0k	17%	8%	2.1%

- Jointly, we infer efficacy significantly more often than inefficacy
- But our "coverage" is limited (i.e., last hops never respond)

Corroborated Service Collateral

type	#prefixes	#corroborated names	#affected
Web	734	30916	
Mail	107	3533	522
NS	46	323	708

- Unreachable for the duration of the blackhole
 - At least for part of the Internet
- However
 - MTA retries may simply incur a delay
 - Cache mechanism may mitigate NS issues

Conclusions

- We started addressing the lack of understanding in how blackholing is used in practice when DoS attacks occur
 - e.g., we wondered if blackholing is used only in extreme cases
- Although we only provide first insights, our findings show:
 - Rapid reaction times suggest frequent use of automation
 - Excessive retention times suggest lack of automated recovery
 - Less intense attacks are also mitigated
- Preliminary augmentation with complementary measurements
 - Enabled us to corroborate BH (in)efficacy
 - "coverage" is limited (e.g., due to observation delays, firewalls)
- Future work
 - We linked only 28% of blackholing to attacks!
 - Improve reactive measurements (e.g., path or last hop analyses)

Questions ?

Mattijs Jonker m.jonker@utwente.nl linkedin.com/in/mattijsj/ mattijsjonker.com

BACKUP SLIDES

Previous study [1/2] DoS characterization at scale

- Integrates data from a large darknet, honeypots and a platform for DNS measurements
- Finds macroscopic and detailed insights about DoS attacks
 - ~30k attacks daily, Internet-wide
 - Affecting many networks and /24 blocks
 - Various attack types are sometimes launched simultaneously against the same target
 - Migration to cloud-based protection occurs faster following more intense attacks

Jonker et al., "Millions of Targets Under Attack: a Macroscopic Characterization of the DoS Ecosystem", in IMC 2017

Previous study [2/2] Blackholing activity at scale

- Systematically studies BGP blackholing at scale
 - ... using large public and private BGP routing data sets
- Finds detailed insights that relate to, among others:
 - ... the adoption of blackholing over time
 - ... effects on the data plane
 - ... operational practices

Giotsas et al., "Inferring BGP blackholing activity in the internet", in IMC 2017

Data sets

Attacks: 28 million in total

source	#events	#targets	#ASNs
UCSD-NT U AmpPot	28.1M	8.6M	36.9k
UCSD-NT N AmpPot	447.6k	0.2M	9.2k

• Blackholing events: 1.3 million in total

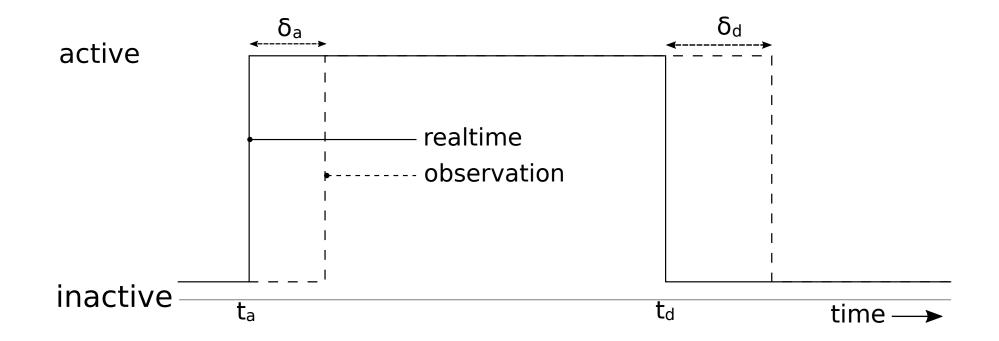
#BH events	#prefixes	#origins
1.3M	146.2k	2.7k

Blackholed attacks [1/2]

- Match attacks with succeeding mitigation through BH
 - ... by requiring BH prefix to "cover" attacked /32
 - ... and cap at 24h

source	#attacks	#targets	#ASNs
UCSD-NT U AmpPot	456.0k / 28.1M (1.6%)	70k / 8.6M (0.8%)	2.5k
UCSD-NT N AmpPot	18.4k / 447.6k (4.1%)	5.7k / 6.0M (3.3%)	0.8k

- Small percentages suggest noise, but:
 - Small attack intensities trigger BH (later)
 - We can observe BH only for a subset of ASes/targets
 - 2.5k ASes involved significant, but BH use might not be largely widespread
- Joint attacks (∩) appear more likely to be BH'd


Blackholed attacks [2/2]

Match blackholing events with preceding attacks

source	#BH events	#BH'd prefixes
UCSD-NT U AmpPot	363.0k / 1.3M (27.8%)	45.2k / 146.2k (30.9%)

- We match 27.8% with attacks
- Results do not allow us to infer the fraction of other types of attacks (e.g., direct and unspoofed)
- However, highlights that *reflection* and *randomly spoofed* DoS represents a significant share of DoS that operators had to deal with

Observation delay

